To Cascade or not to Cascade
Novel approaches to VUS classification in Familial Hypercholesterolemia

Rebecca Whittington
Bristol Genetics Laboratory
Rebecca Whittington@nbt.nhs.uk

The UKGTN FH testing laboratories
Aberdeen, Cardiff, GOSH, Sheffield, Liverpool, Belfast
Familial Hypercholesterolaemia

- Disorder of lipid metabolism.
- Monogenic (*LDLR, APOB, PCSK9, LDLRAP1*)
- Polygenic
- Estimated prevalence of 1/200-1/300 in the UK
- Elevated LDL-C; premature atherosclerosis ↑ risk of cardiac events
- Simon Broom Criteria: lipid levels, physical signs, family history

- Early detection and statin therapy prevents acute cardiac events

Drivers for FH testing:
Aug 2008: NICE Guidance CG71
Mar 2013: DoH CVD Outcomes Strategy – Key Target 5
2014/15 BHF Investment – FH Cascade programme

26.9 WTE nurses 13 centres
Population 21.3 million
Increased demand for both the **Diagnostic** and **Cascade** Service:

- >2300 diagnostic NGS panel tests
- 584 familial cases (522 cascade + 63 Segregations)

High throughput approach:
- Beckman Robot
- 96 patients
- Illumina NextSeq 500

Skill mix review

Template reports
Exceptional healthcare, personally delivered

Personalised medicine in the genomic era

FH NGS v3 assay redesign:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Transcript</th>
<th>Inheritance</th>
<th>Exons</th>
<th>Region of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDLR</td>
<td>NM_000527.4</td>
<td>A.D.</td>
<td>18</td>
<td>Promoter + Exons + Introns</td>
</tr>
<tr>
<td>APOB</td>
<td>NM_000384.2</td>
<td>A.D.</td>
<td>29</td>
<td>Promoter + Exons</td>
</tr>
<tr>
<td>PCSK9</td>
<td>NM_174936.3</td>
<td>A.D.</td>
<td>12</td>
<td>Promoter + Exons</td>
</tr>
<tr>
<td>LDLRAP1</td>
<td>NM_015627.2</td>
<td>A.R.</td>
<td>9</td>
<td>Promoter + Exons</td>
</tr>
<tr>
<td>STAP1</td>
<td>NM_012108.2</td>
<td>A.D.</td>
<td>9</td>
<td>Promoter + Exons</td>
</tr>
<tr>
<td>SLC01B1</td>
<td>NM_006446.4</td>
<td>rs2306283</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs4149056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCSK9</td>
<td>NM_174936.3</td>
<td>rs2479409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELSR2</td>
<td>NM_001408.2</td>
<td>rs629301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOB</td>
<td>NM_000384.2</td>
<td>rs1367117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCG8</td>
<td>NM_022437.2</td>
<td>rs4299376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC2A1</td>
<td>NM_003057.2</td>
<td>rs2306283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFE</td>
<td>NM_000410.3</td>
<td>rs1800562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYLIP</td>
<td>NM_013262.3</td>
<td>rs3757354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST3GAL4</td>
<td>NM_006278.2</td>
<td>rs11220462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYNIN</td>
<td>NM_025081.2</td>
<td>rs8017377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDLR</td>
<td>NM_000527.4</td>
<td>rs6511720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE</td>
<td>NM_000041.2</td>
<td>rs429358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE</td>
<td>NM_000041.2</td>
<td>rs7412</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monogenic FH (intronic regions & LDLR copy number)
- LDLR, APOB, PCSK9, LDLRAP1

SLCO1B1 – predicts adverse drug reactions

Polygenic SNP score 12 LDL-C raising SNPs*
- Genotype used in combination to generate a polygenic SNP score

- **Deciles 1-3** – Least Likely Polygenic FH
- **Deciles 4-5** – Intermediate / grey area
- **Deciles 6-10** – Likely Polygenic FH

- Patients in decile 10: 4x more likely to have polygenic FH (LDL-C >4.9mmol/L), than those in decile 1.
- Additional tool for **VUS pathogenicity**
- **Triage patients for 100,000 Genomes Project**

Exceptional healthcare, personally delivered

>2300 FH diagnostic cases

Detection rate

- Negative 69%
- VUS 6%
- Pathogenic variant 25%

Positive Detection Rate = 25%

VUS per gene

- LDLR 37%
- APOB 47%
- PCSK9 16%

- 24 unique LDLR Class 3 variants
- 56 unique APOB Class 3 variants
- 15 unique PCSK9 Class 3 variants

VUS detected in 6% of patients.

VUS reclassification would allow entry into the cascade programme
Variant pathogenicity assessment in FH

Classification tools available for FH:

- **Bioinformatics tools, comprehensive literature searches**

- **External Databases**
 - British Heart Foundation Database
 - HGMD Database
 - LOVD
 - JOJO Genetics

- **Data sharing**
 - FH “e network” between UKGTN and FH research labs
 - VUS Data exchange (BGL, Aberdeen, Cardiff, GOSH, Belfast)

- **Segregation studies**
 - Cardiff Heart Research Wales funded project
 - Individual labs segregation studies

- **Functional studies and RNA splicing**
VUS and The Polygenic SNP assay

VUS
\(n = 37\)

Deciles 6-10
Likely polygenic FH
\(n = 20\) (54%)

Deciles 1-3
Unlikely polygenic FH
\(n = 9\) (24%)

Deciles 4-5
Grey zone
\(n = 8\) (22%)

- No further work
- Further work: **Likely monogenic FH**
- Further work required

Exceptional healthcare, personally delivered

North Bristol NHS Trust
Case Study One – Data sharing results in reclassification of VUS

Referral reason:
34yr old female
Pre-treatment: LDL-C 6.4mmol/L.

NGS assay results:
Heterozygous for novel *LDLR* missense variant, c.2311G>A, p.(Ala771Thr)

Evidence
Not reported in the literature or databases
Small physiochemical difference between amino acids
Amino acid moderately conserved
BI unconvincing - may affect splicing

Segregation analysis: insufficient to reclassify

Seen in 8 FH patients (Aberdeen, GOSH, BGL)

Reclassified: ‘Highly likely’ to be pathogenic

Facilitates cascade testing of index case’s children.
Case Study One – Data sharing results in reclassification of VUS

Harefield family
Since identified this variant in a second family

Index case: 60 year old male.
LDL-C 9.1
FH heart disease and high cholesterol

Allowed cascade testing

- 9 siblings

- Diabetes
- CV/IA 85

- MI 50
- RP 25

- 91

- Muscular

- Artery

- On cholesterol treatment

- Heart Disease

- High cholesterol

- On cholesterol treatment

Exceptional healthcare, personally delivered
Case Study Two – *LDLR*-35C>G promoter Variant

Case 1
56yr old female; ?FH. Referred from Bournemouth

Case 2
54yr old female; raised cholesterol
Father and mother premature heart disease
Referred from Weston

Results of the FH NGS assay
Novel *LDLR* c.-35C>G promoter variant identified
Polygenic SNP score – 1\(^{st}\) and 2\(^{nd}\) decile

Could Promoter variants be the cause of FH?

How can data sharing and segregation clarify?
Case Study Two – *LDLR*-35C>G promoter Variant

Segregation Analysis at BGL (Case 2)

Segregated with 4 relatives.

Reclassified to ‘likely pathogenic’ – cascade testing available.

The 2nd BGL patient – no cascade testing yet, but this another large family which will benefit.
Case Study Three – Potential LDLR Intronic Putative Cryptic Splice Variant

Referral reason:
24 year old male
Polish
Raised total cholesterol 20.4mmol/l.

NGS assay results:
No causative FH mutation identified
2 x likely benign variants:
 LDLR Intron 13 c.1988-60G>T, p.(?)
 APOB c.2068-4T>A, p.(?)

Polygenic SNP score 0.826 (Decile 4) – grey zone

Follow up studies
Mother – 46 years
Polish
Cholesterol 12.9mmol/L
?FH

Unaffected brother: sample expected
Case Study Three – Potential **LDLR** Intronic Putative Cryptic Splice Variant

Analysis of LDLR mRNA in patients with familial hypercholesterolemia revealed a novel mutation in intron 14, which activates a cryptic splice site

Mari Ann Kulseth¹, Knut Erik Berge¹, Martin Prøven Bøgrud² and Trond P Leren³

Evidence potentially supporting this c.1988-60G>T variant

Not reported to population databases
- **BUT** outside ROI and area normally covered by exome data.
- Not seen in: - >2300 BGL cohort of referrals
 - 385 exomes (Exeter lab)
 - No other variation reported in this small intron
 - Polish laboratory cohort
- **In silico Splice Tools:** 1 tool predicts creation of a donor site

What Next?
Further Segregation Analysis - Test unaffected brother.

RNA studies – designed primers and awaiting samples

Candidate for the 100,000 Genome Project – Likely monogenic cause

Illustrates cryptic splice sites can be a mechanism for this gene.
Summary

- A comprehensive high throughput personalised medicine NGS assay which detects monogenic & polygenic FH and informing information regarding adverse drug reactions.

- Supports the genomic pathway for triaging patients into 100,000 genomes project

- Polygenic SNP tool can be used as an aid in classifying VUS

- Highlights the vital importance of data sharing (e-network), functional studies and segregation analysis in variant reclassification for FH.

- Need a central data resource for reporting of variants – what should this be?
 - Need an agreed mechanism for the reclassification of variants
 - How should people get updated?
Acknowledgements

Lipid teams
Dr Graham Bayly (Bristol)
Dr Andrew Taylor (Bath)
Dr Andrew Day (Weston)
Dr Ruth Ayling (London)
Dr Simon Fleming (Truro)
Mel Watson (Southampton)
Dr Rasaq Olufadi (Dorchester)
Dr Ahmed Waise (Bournemouth)
Dr Paul Giles (Walsall)
Dr Robert Cramb (Birmingham)
Dr Andrew Iverson (Brighton)
Dr Mahmoud Barbir (Royal Brompton)
Jane Breen (Royal Brompton)
Sarojini Pandey Prof Mike Khan (Coventry)
Dr Christian Penno (Lund, Sweden)
Dr Bernice Lopez (Harrogate)
Dr Bill Newman (Manchester)
Prof M Sampson (Norwich)

Research
UCL Prof Steve Humphries
 Dr Sarah Long
 Dr Marta Futema
 Cardiff Dr Kate Haralambos
 Prof Ian McDowell
 ICL Prof Tim Aitman
 Dr Yana Vandrovcova

BHF FH Nurses

UKGTN Laboratories
Alison Taylor-Beadling GOSH
Dr Christine Bell Aberdeen
Padraig Belfast
Richard Kirk Sheffield
Roger Mountford Liverpool

http://www.nbt.nhs.uk/genetics
Acknowledgments

BGL FH Team

Scientific
Lizzie Watson, Alison Hills, Carol Robinson, Julie Honeychurch, Maggie Williams

Bioinformatics
Geoff Woodward, Marc Wadsley

Technical and Support Staff
Jo Davies, Usman Mahmood, Hannah Smallridge, Wesley Simpson, David Bone, Carolyn Dent

Bristol Genetics Laboratory
www.nbt.nhs.uk/genetics
rebecca.whittington@nbt.nhs.uk

Agilent
Richard Willis